4.7 Article

Ice nucleation by electric surface fields of varying range and geometry

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 139, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4824139

关键词

-

资金

  1. Natural Science and Engineering Research Council of Canada
  2. Canada Foundation for Innovation
  3. Alberta Innovation and Science
  4. BC Advanced Education

向作者/读者索取更多资源

Molecular dynamics simulations are employed to show that electric field bands acting only over a portion of a surface can function as effective ice nuclei. Field bands of different geometry (rectangular, triangular, and semicircular cross sectional areas are considered) all nucleate ice, provided that the band is sufficiently large. Rectangular bands are very efficient if the width and thickness are greater than or similar to 0.35 nm, and greater than or similar to 0.15 nm, respectively, and the necessary dimensions are comparable for other geometries. From these simulations we also learn more about the ice nucleation and growth process. Careful analysis of different systems reveals that ice strongly prefers to grow at (111) planes of cubic ice. This agrees with an earlier theoretical deduction based on considerations of water-ice interfacial energies. We find that ice nucleated by field bands usually grows as a mixture of cubic and hexagonal ice, consistent with other simulations of ice growth, and with experiment. This contrasts with simulations carried out with nucleating fields that span the entire surface area, where cubic ice dominates, and hexagonal layers are very rarely observed. We argue that this discrepancy is a simulation artifact related to finite sample size and periodic boundary conditions. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据