4.7 Article

An analytical continuation approach for evaluating emission lineshapes of molecular aggregates and the adequacy of multichromophoric Forster theory

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4803694

关键词

-

资金

  1. JSPS [24850018, 25708003]
  2. Grants-in-Aid for Scientific Research [24850018, 25708003] Funding Source: KAKEN

向作者/读者索取更多资源

In large photosynthetic chromophore-protein complexes not all chromophores are coupled strongly, and thus the situation is well described by formation of delocalized states in certain domains of strongly coupled chromophores. In order to describe excitation energy transfer among different domains without performing extensive numerical calculations, one of the most popular techniques is a generalization of Forster theory to multichromophoric aggregates (generalized Forster theory) proposed by Sumi [J. Phys. Chem. B 103, 252 (1999)] and Scholes and Fleming [J. Phys. Chem. B 104, 1854 (2000)]. The aim of this paper is twofold. In the first place, by means of analytic continuation and a time convolutionless quantum master equation approach, a theory of emission lineshape of multichromophoric systems or molecular aggregates is proposed. In the second place, a comprehensive framework that allows for a clear, compact, and effective study of the multichromophoric approach in the full general version proposed by Jang, Newton, and Silbey [Phys. Rev. Lett. 92, 218301 (2004)] is developed. We apply the present theory to simple paradigmatic systems and we show on one hand the effectiveness of time-convolutionless techniques in deriving lineshape operators and on the other hand we show how the multichromophoric approach can give significant improvements in the determination of energy transfer rates in particular when the systems under study are not the purely Forster regime. The presented scheme allows for an effective implementation of the multichromophoric Forster approach which may be of use for simulating energy transfer dynamics in large photosynthetic aggregates, for which massive computational resources are usually required. Furthermore, our method allows for a systematic comparison of multichromophoric Foster and generalized Forster theories and for a clear understanding of their respective limits of validity. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据