4.7 Article

Extreme density-driven delocalization error for a model solvated-electron system

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 139, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4829642

关键词

-

资金

  1. Spanish Malta/Consolider initiative [CSD2007-00045]

向作者/读者索取更多资源

Delocalization (or charge-transfer) error is one of the scarce but spectacular failures of density-functional theory. It is particularly apparent in extensively delocalized molecules, and manifests in the calculation of bandgaps, reaction barriers, and dissociation limits. Even though delocalization error is always present in the self-consistent electron density, the differences from reference densities are often quite subtle and the error tends to be driven by the exchange-correlation energy expression. In this article, we propose a model system (the Kevan model) where approximate density functionals predict dramatically different charge distributions because of delocalization error. The model system consists of an electron trapped in a water hexamer and is a finite representation of an experimentally observed class of solids: electrides. The Kevan model is of fundamental interest because it allows the estimation of charge transfer error without recourse to fractional charge calculations, but our results are also relevant in the context of the modeling of confined electrons in density-functional theory. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据