4.7 Article

Translocation dynamics of a short polymer driven by an oscillating force

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4789016

关键词

-

资金

  1. MIUR
  2. Spanish DGICYT Project [FIS2011-25167]
  3. FEDER funds

向作者/读者索取更多资源

We study the translocation dynamics of a short polymer moving in a noisy environment and driven by an oscillating force. The dynamics is numerically investigated by solving a Langevin equation in a two-dimensional domain. We consider a phenomenological cubic potential with a metastable state to model the polymer-pore interaction and the entropic free energy barrier characterizing the translocation process. The mean first translocation time of the center of inertia of polymers shows a nonmonotonic behavior, with a minimum, as a function of the number of the monomers. The dependence of the mean translocation time on the polymer chain length shows a monotonically increasing behavior for high values of the number of monomers. Moreover, the translocation time shows a minimum as a function of the frequency of the oscillating forcing field for all the polymer lengths investigated. This finding represents the evidence of the resonant activation phenomenon in the dynamics of polymer translocation, whose occurrence is maintained for different values of the noise intensity. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789016]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据