4.7 Article

Contraction of completeness-optimized basis sets: Application to ground-state electron momentum densities

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4788635

关键词

-

资金

  1. Jenny and Antti Wihuri foundation
  2. Academy of Finland through its Centers of Excellence program
  3. University of Helsinki [490064]
  4. [1127462]
  5. [1259526]

向作者/读者索取更多资源

Completeness-optimization is a novel method for the formation of one-electron basis sets. Contrary to conventional methods of basis set generation that optimize the basis set with respect to ground-state energy, completeness-optimization is a completely general, black-box method that can be used to form cost-effective basis sets for any wanted property at any level of theory. In our recent work [J. Lehtola, P. Manninen, M. Hakala, and K. Hamalainen, J. Chem. Phys. 137, 104105 (2012)] we applied the completeness-optimization approach to forming primitive basis sets tuned for calculations of the electron momentum density at the Hartree-Fock (HF) level of theory. The current work extends the discussion to contracted basis sets and to the post-HF level of theory. Contractions are found to yield significant reductions in the amount of functions without compromising the accuracy. We suggest polarization-consistent and correlation-consistent basis sets for the first three rows of the periodic table, which are completeness-optimized for electron momentum density calculations. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788635]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据