4.7 Article

Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 20, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4807612

关键词

-

资金

  1. Initiative for Sustainability and Energy at Northwestern (ISEN) Booster Award
  2. Northwestern University

向作者/读者索取更多资源

We present an efficient theory and algorithm for computing four-component relativistic Dirac-Fock wave functions using the Coulomb, Gaunt, and full Breit interactions. Our implementation is based on density fitting, and is routinely applicable to systems with 100 atoms and a few heavy elements. The small components are expanded using 2-spinor basis functions. We show that the factorization of 3-index half-transformed integrals before building Coulomb and exchange matrices is essential for efficient evaluation of the Fock matrix. With the Coulomb interaction, the computational cost for evaluating the Fock operator has been found to be only 70-90 times that in the non-relativistic density-fitted Hartree-Fock method. The prefactors have been 170 and 350-450 for the Gaunt and Breit interactions, respectively. The largest molecule to which we have applied the Dirac-Fock-Coulomb method is an Ac(III) motexafin complex (130 atoms, 556 electrons, 1289 basis functions), for which one self-consistent iteration takes around 1100 s using 1024 CPU cores. In addition, we have found that, while the standard fitting basis sets are accurate for Dirac-Fock-Coulomb calculations, their accuracy is very poor for Dirac-Fock-Gaunt and Breit calculations. We report a prototype of accurate fitting basis sets for these cases. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据