4.7 Article

Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 137, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4752107

关键词

-

向作者/读者索取更多资源

Following the observation of long-lived coherences in the two-dimensional (2D) electronic spectra of the Fenna-Matthews-Olson (FMO) complex, many theoretical works suggest that coherences between excitons may play a role in the efficient energy transfer that occurs in photosynthetic antennae. This interpretation of the dynamics depends on the assignment of quantum beating signals to superpositions of excitons, which is complicated by the possibility of observing both electronic and vibrational coherences in 2D spectra. Here, we explore 2D spectra of bacteriochlorophyll a (BChla) in solution in an attempt to isolate vibrational beating signals in the absence of excitonic signals to identify the origin of the quantum beats in 2D spectra of FMO. Even at high laser power, our BChla spectra show strong beating only from the nonresonant response of the solvent. The beating signals that we can conclusively assign to vibrational modes of BChla are only slightly above the noise and at higher frequencies than those previously observed in spectra of FMO. Our results suggest that the beating observed in spectra of FMO is of a radically different character than the signals observed here and can therefore be attributed to electronic coherences or intermolecular degrees of freedom. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752107]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据