4.7 Article

Local explicitly correlated second- and third-order Moller-Plesset perturbation theory with pair natural orbitals

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 136, 期 20, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4719981

关键词

-

资金

  1. Royal Society
  2. TURBOMOLE GmbH

向作者/读者索取更多资源

We present an algorithm for computing explicitly correlated second-and third-order Moller-Plesset energies near the basis set limit for large molecules with a cost that scales formally as N-4 with system size N. This is achieved through a hybrid approach where locality is exploited first through orbital specific virtuals (OSVs) and subsequently through pair natural orbitals (PNOs) and integrals are approximated using density fitting. Our method combines the low orbital transformation costs of the OSVs with the compactness of the PNO representation of the doubles amplitude vector. The N-4 scaling does not rely upon the a priori definition of domains, enforced truncation of pair lists, or even screening and the energies converge smoothly to the canonical values with decreasing occupation number thresholds, used in the selection of the PNO basis. For MP2.5 intermolecular interaction energies, we find that 99% of benchmark basis set limit correlation energy contributions are recovered using an aug-cc-pVTZ basis and that on average only 50 PNOs are required to correlate the significant orbital pairs. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4719981]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据