4.7 Article

Steady-state fluctuations of a genetic feedback loop: An exact solution

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 137, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4736721

关键词

-

资金

  1. Scottish Universities Life Sciences Alliance (SULSA)
  2. National Science Foundation (NSF) through the Mathematical Biosciences Institute [0112050]

向作者/读者索取更多资源

Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence, exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution [J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, Phys. Rev. E 72, 051907 (2005), and subsequent studies]. We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736721]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据