4.7 Article

Two-dimensional laser induced fluorescence spectroscopy of van der Waals complexes: Fluorobenzene-Arn (n=1,2)

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 136, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3697474

关键词

-

资金

  1. Australian Research Council
  2. Flinders University

向作者/读者索取更多资源

The technique of two-dimensional laser induced fluorescence (2D-LIF) spectroscopy has been used to observe the van der Waals complexes fluorobenzene-Ar and fluorobenzene-Ar-2 in the region of their S-1-S-0 electronic origins. The 2D-LIF spectral images reveal a number of features assigned to the van der Waals vibrations in S-0 and S-1. An advantage of 2D-LIF spectroscopy is that the LIF spectrum associated with a particular species may be extracted from an image. This is illustrated for fluorobenzene-Ar. The S-1 van der Waals modes observed in this spectrum are consistent with previous observations using mass resolved resonance enhanced multiphoton ionisation techniques. For S-0, the two bending modes previously observed using a Raman technique were observed along with three new levels. These agree exceptionally well with ab initio calculations. The Fermi resonance between the stretch and bend overtone has been analysed in both the S-0 and S-1 states, revealing that the coupling is stronger in S-0 than in S-1. For fluorobenzene-Ar-2 the 2D-LIF spectral image reveals the S-0 symmetric stretch van der Waals vibration to be 35.0 cm(-1), closely matching the value predicted based on the fluorobenzene-Ar van der Waals stretch frequency. Rotational band contour analysis has been performed on the fluorobenzene-Ar <(0(0)(0))over bar> transition to yield a set of S-1 rotational constants A' = 0.05871 +/- 0.00014 cm(-1), B' = 0.03803 +/- 0.00010 cm(-1), and C '' = 0.03103 +/- 0.00003 cm(-1). The rotational constants imply that in the S-1 0(0) level the Ar is on average 3.488 angstrom from the fluorobenzene centre of mass and displaced from it towards the centre of the ring at an angle of similar to 6 degrees to the normal. The rotational contour for fluorobenzene-Ar-2 was predicted using rotational constants calculated on the basis of the fluorobenzene-Ar geometry and compared with the experimental contour. The comparison is poor which, while due in part to expected saturation effects, suggests the presence of another band lying beneath the contour. (C) 2012 American Institute of Physics. [http://dx.doi. org/10.1063/1.3697474]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据