4.7 Article

Grand canonical-like molecular dynamics simulations: Application to anisotropic mass diffusion in a nanoporous medium

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 136, 期 18, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4712139

关键词

-

资金

  1. European Research Council

向作者/读者索取更多资源

In this work, we describe two grand canonical-like molecular dynamics approaches to investigate mass diffusion phenomenon of a simple Lennard-Jones fluid confined between solid surfaces and in direct contact with reservoirs. In the first method, the density is used as the control variable in the reservoir whereas it is the pressure in the second method. Both methods provide consistent results, however, the constant density approach is the most efficient with respect to the computational time and implementation. Then, employing the constant density approach, we have studied the transient behavior of the diffusion process associated with the migration of one fluid into another one confined between parallel solid walls. Results have shown that the evolution of molar fraction of the invading fluid follows roughly a 1D diffusion model when the solid phase is weakly or moderately adsorbent with a characteristic time increasing when the pore width decreases. However, when the adsorption is high and the pore width small (i.e., below ten molecular sizes), the apparent mass diffusion in the adsorbed layer is reduced compared to that in the center of the slit pore. Hence, this mass diffusion process becomes a two-dimension phenomenon that must take into account an effective mass diffusion coefficient varying locally. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712139]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据