4.7 Article

Quantum-classical path integral. II. Numerical methodology

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 137, 期 22, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4767980

关键词

-

资金

  1. National Science Foundation (NSF) [CHE 11-12422]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1112422] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present a quantum-classical methodology for propagating the density matrix of a system coupled to a polyatomic (large molecular or solvent) environment. The system is treated via a full path integral, while the dynamics of the environment is approximated in terms of classical trajectories. We obtain quantum-classical path integral (QCPI) expressions in which the trajectories can undergo transitions to other quantum states at regular time intervals, but the cumulative probability of these transitions is governed by the local strength of the state-to-state coupling as well as the magnitude of the solvent reorganization energy. If quantum effects in the coordinates of the environment are relatively weak, an inexpensive random hop approximation leads to accurate descriptions of the dynamics. We describe a systematic iterative scheme for including quantum mechanical corrections for the solvent by gradually accounting for nonlocal quantum memory effects. As the length of the included memory approaches the decoherence time of the environment, the iterative QCPI procedure converges to the full QCPI result. The methodology is illustrated with application to dissipative symmetric and asymmetric two-level systems. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767980]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据