4.7 Article

Multilayer multiconfiguration time-dependent Hartree method: Implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 134, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3535541

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG)

向作者/读者索取更多资源

The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and a fully general implementation for any number of layers based on the recursive ML-MCTDH algorithm given by Manthe [J. Chem. Phys. 128, 164116 (2008)] is presented. The method is applied first to a generalized Henon-Heiles (HH) Hamiltonian. For 6D HH the overhead of ML-MCTDH makes the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report as well 1458D simulations of the HH Hamiltonian using a seven-layer scheme. The photoabsorption spectrum of pyrazine computed with the 24D Hamiltonian of Raab et al. [J. Chem. Phys. 110, 936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH calculations needing a fraction of the time and resources of reference MCTDH calculations provide already spectra with all the correct features. Accepting slightly larger deviations, the calculation can be accelerated to take only 7 min. When pushing the method toward convergence, results of similar quality than the best available MCTDH benchmark, which is based on a wavepacket with 4.6 x 10(7) time-dependent coefficients, are obtained with a much more compact wavefunction consisting of only 4.5 x 10(5) coefficients and requiring a shorter computation time. (C) 2011 American Institute of Physics. [doi:10.1063/1.3535541]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据