4.7 Article

Communication: Superatom molecular orbitals: New types of long-lived electronic states

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 135, 期 20, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3665089

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB 762]
  2. Stanford Institute for Materials Energy Science
  3. Stanford Pulse Institute for ultrafast science

向作者/读者索取更多资源

We present ab initio calculations of the quasiparticle decay times in a Buckminsterfullerene based on the many-body perturbation theory. A particularly lucid representation arises when the broadening of the quasiparticle states is plotted in the angular momentum (l) and energy (epsilon) coordinates. In this representation the main spectroscopic features of the fullerene consist of two occupied nearly parabolic bands, and delocalized plane-wave-like unoccupied states with a few long-lived electronic states (the superatom molecular orbitals, SAMOs) embedded in the continuum of Fermi-liquid states. SAMOs have been recently uncovered experimentally by Feng et al. [Science 320, 359 (2008)] using scanning tunneling spectroscopy. The present calculations offer an explanation of their unusual stability and unveil their long-lived nature making them good candidates for applications in the molecular electronics. From the fundamental point of view these states illustrate a concept of the Fock-space localization [B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997)] with properties drastically different from the Fermi-liquid excitations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3665089]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据