4.7 Article

Electric field inside a Rossky cavity in uniformly polarized water

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 135, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3628679

关键词

-

资金

  1. National Science Foundation (NSF) [CHE-0910905]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [0910905] Funding Source: National Science Foundation

向作者/读者索取更多资源

Electric field produced inside a solute by a uniformly polarized liquid is strongly affected by dipolar polarization of the liquid at the interface. We show, by numerical simulations, that the electric cavity field inside a hydrated non-polar solute does not follow the predictions of standard Maxwell's electrostatics of dielectrics. Instead, the field inside the solute tends, with increasing solute size, to the limit predicted by the Lorentz virtual cavity. The standard paradigm fails because of its reliance on the surface charge density at the dielectric interface determined by the boundary conditions of the Maxwell dielectric. The interface of a polar liquid instead carries a preferential in-plane orientation of the surface dipoles thus producing virtually no surface charge. The resulting boundary conditions for electrostatic problems differ from the traditional recipes, affecting the microscopic and macroscopic fields based on them. We show that relatively small differences in cavity fields propagate into significant differences in the dielectric constant of an ideal mixture. The slope of the dielectric increment of the mixture versus the solute concentration depends strongly on which polarization scenario at the interface is realized. A much steeper slope found in the case of Lorentz interfacial polarization also implies a higher free energy penalty for polarizing such mixtures. (C) 2011 American Institute of Physics. [doi:10.1063/1.3628679]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据