4.7 Article

Quantum reaction boundary to mediate reactions in laser fields

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 134, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3528937

关键词

-

资金

  1. Japan Society for the Promotion of Science
  2. JSPS, JST/CREST

向作者/读者索取更多资源

Dynamics of passage over a saddle is investigated for a quantum system under the effect of time-dependent external field (laser pulse). We utilize the recently developed theories of nonlinear dynamics in the saddle region, and extend them to incorporate both time-dependence of the external field and quantum mechanical effects of the system. Anharmonic couplings and laser fields with any functional form of time dependence are explicitly taken into account. As the theory is based on the Weyl expression of quantum mechanics, interpretation is facilitated by the classical phase space picture, while no classical approximation is involved. We introduce a quantum reactivity operator to extract the reactive part of the system. In a model system with an optimally controlled laser field for the reaction, it is found that the boundary of the reaction in the phase space, extracted by the reactivity operator, is modulated with time by the effect of the laser field, to catch the system excited in the reactant region, and then to release it into the product region. This method provides new insights in understanding the origin of optimal control of chemical reactions by laser fields. (C) 2011 American Institute of Physics. [doi:10.1063/1.3528937]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据