4.7 Article

High-level ab initio potential energy surfaces and vibrational energies of H2CS

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 135, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3624570

关键词

ab initio calculations; coupled cluster calculations; organic compounds; potential energy surfaces; vibrational states

向作者/读者索取更多资源

Six-dimensional (6D) potential energy surfaces (PESs) of H2CS have been generated ab initio using the recently proposed explicitly correlated (F12) singles and doubles coupled cluster method including a perturbational estimate of connected triple excitations, CCSD(T)-F12b [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] in conjunction with F12-optimized correlation consistent basis sets. Core-electron correlation, high-order correlation, scalar relativistic, and diagonal Born-Oppenheimer terms were included as additive high-level (HL) corrections. The resulting 6D PESs were represented by analytical functions which were used in variational calculations of the vibrational term values below 5000 cm(-1). The best PESs obtained with and without the HL corrections, VQZ-F12*(HL) and VQZ-F12*, reproduce the fundamental vibrational wavenumbers with mean absolute deviations of 1.13 and 1.22 cm(-1), respectively. A detailed analysis of the effects of the HL corrections shows how the VQZ-F12 results benefit from error cancellation. The present purely ab initio PESs will be useful as starting points for empirical refinements towards an accurate spectroscopic PES of H2CS. (C) 2011 American Institute of Physics. [doi:10.1063/1.3624570]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据