4.7 Article

Electrostatics and aggregation: How charge can turn a crystal into a gel

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 135, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3626803

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-AC02-05CH11231]
  2. National of Institutes of Health (NIH) [GM34993]
  3. Defense Threat Reduction Agency [IACRO-B0845281]
  4. Sandler Family Foundation

向作者/读者索取更多资源

The crystallization of proteins or colloids is often hindered by the appearance of aggregates of low fractal dimension called gels. Here we study the effect of electrostatics upon crystal and gel formation using an analytic model of hard spheres bearing point charges and short range attractive interactions. We find that the chief electrostatic free energy cost of forming assemblies comes from the entropic loss of counterions that render assemblies charge-neutral. Because there exists more accessible volume for these counterions around an open gel than a dense crystal, there exists an electrostatic entropic driving force favoring the gel over the crystal. This driving force increases with increasing sphere charge, but can be counteracted by increasing counterion concentration. We show that these effects cannot be fully captured by pairwise-additive macroion interactions of the kind often used in simulations, and we show where on the phase diagram to go in order to suppress gel formation. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3626803]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据