4.7 Article

The temperature dependence of methane dissociation on Ni(111) and Pt(111): Mixed quantum-classical studies of the lattice response

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 132, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3357415

关键词

adsorption; chemisorption; density functional theory; dissociation; organic compounds; potential energy surfaces; surface chemistry

资金

  1. U.S. Department of Energy [DE-FG02-87ER13744]
  2. U.S. Department of Energy (DOE) [DE-FG02-87ER13744] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The barrier to the dissociative adsorption of methane on metal surfaces is generally large, and its height can vary with the motion of the lattice atoms. One fully quantum and three different mixed quantum-classical approaches are used to examine this reaction on Ni(111) and Pt(111) surfaces, using potential energy surfaces derived from density functional theory. The three approximate methods are benchmarked against the exact quantum studies, and two of them are shown to work reasonably well. The mixed models, which treat the lattice motion classically, are used to examine the lattice response during the reaction. It is found that the thermal motion of the lattice atoms strongly modifies the reactivity, but that their motion is not significantly perturbed. Based on these results, new models for methane reactions are proposed based on a sudden treatment of the lattice motion and shown to agree well with the exact results. In these new models, the reaction probability at different surface temperatures is computed from static surface reaction probabilities, allowing for a quantum calculation of the reaction probability without having to explicitly treat the motion of the heavy lattice atoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据