4.7 Article

Comparing geometric and kinetic cluster algorithms for molecular simulation data

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 132, 期 7, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.3301140

关键词

metastable states; molecular biophysics; molecular configurations; molecular dynamics method; potential energy surfaces; proteins

资金

  1. Swiss National Science Foundation (SNSF)
  2. Spanish MICINN/FEDER [BIO2007-62954]
  3. ICREA Funding Source: Custom

向作者/读者索取更多资源

The identification of metastable states of a molecule plays an important role in the interpretation of molecular simulation data because the free-energy surface, the relative populations in this landscape, and ultimately also the dynamics of the molecule under study can be described in terms of these states. We compare the results of three different geometric cluster algorithms (neighbor algorithm, K-medoids algorithm, and common-nearest-neighbor algorithm) among each other and to the results of a kinetic cluster algorithm. First, we demonstrate the characteristics of each of the geometric cluster algorithms using five two-dimensional data sets. Second, we analyze the molecular dynamics data of a beta-heptapeptide in methanol-a molecule that exhibits a distinct folded state, a structurally diverse unfolded state, and a fast folding/unfolding equilibrium-using both geometric and kinetic cluster algorithms. We find that geometric clustering strongly depends on the algorithm used and that the density based common-nearest-neighbor algorithm is the most robust of the three geometric cluster algorithms with respect to variations in the input parameters and the distance metric. When comparing the geometric cluster results to the metastable states of the beta-heptapeptide as identified by kinetic clustering, we find that in most cases the folded state is identified correctly but the overlap of geometric clusters with further metastable states is often at best approximate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据