4.7 Article

Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 132, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3350871

关键词

cadmium compounds; colloidal crystals; fine structure; II-VI semiconductors; magnetic moments; nanostructured materials; phonons; quantum beat spectra; semiconductor quantum dots

资金

  1. The Natural Science and Engineering Research Council of Canada

向作者/读者索取更多资源

Acoustic phonon modes in colloidal semiconductor nanocrystals are of significant interest due to their role in dephasing and as the main component of homogeneous line broadening. Despite their importance, these modes have proven elusive and have only recently been experimentally observed. This paper expands on results presented in our earlier paper [V. M. Huxter, A. Lee, S. S. Lo, , Nano Lett. 9, 405 (2008)], where a cross polarized heterodyne detected ultrafast transient grating (CPH-3TG) technique was used to observe the acoustic phonon mode. In the present work, we explain the origin of the observed quantum beat in the CPH-3TG signal. Further experiments are presented that show that the observed quantum beat, which arises from a coherent acoustic phonon mode in the nanocrystals, appears in anisotropy-type signals. The action of this mode induces a periodic strain in the nanocrystal that lowers the symmetry of the unit cell, mixing the fine structure states and their transition dipole moments. This mixing is manifested in anisotropy signals as a depolarization, which periodically modifies the rotational averaging factors. Through observation of the acoustic phonon mode using the CPH-3TG optical technique, it is possible to access its microscopic (atomic-level) basis and to use it as a probe to quantify changing macroscopic (whole particle) material parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据