4.7 Article

The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 15, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3489418

关键词

-

资金

  1. Hungarian National Research Fund [OTKA K75132, OTKA K68641]
  2. Janos Bolyai Research Fellowship

向作者/读者索取更多资源

We propose a simple model to explain the nonmonotonic concentration dependence of the mean activity coefficient of simple electrolytes without using any adjustable parameters. The primitive model of electrolytes is used to describe the interaction between ions computed by the adaptive grand canonical Monte Carlo method. For the dielectric constant of the electrolyte, we use experimental concentration dependent values. This is included through a solvation term in our treatment to describe the interaction between ions and water that changes as the dielectric constant changes with concentration. This term is computed by a Born-treatment fitted to experimental hydration energies. Our results for LiCl, NaCl, KCl, CsCl, NaBr, NaI, MgCl(2), CaCl(2), SrCl(2), and BaCl(2) demonstrate that the principal reason of the nonmonotonic behavior of the activity coefficient is a balance between the solvation and ion-ion correlation terms. This conclusion differs from previous studies that assumed that it is the balance of hard sphere repulsion and electrostatic attraction that produces the nonmonotonic behavior. Our results indicate that the earlier assumption that solvation can be taken into account by a larger, solvated ionic radius should be reconsidered. To explain second order effects (such as dependence on ionic size), we conclude that explicit water models are needed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489418]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据