4.7 Article

Photodissociation and photoionization of 2,5-dihydroxybenzoic acid at 193 and 355 nm

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3518709

关键词

-

向作者/读者索取更多资源

Photodissociation and photoionization of 2,5-dihydroxybenzoic acid (25DHBA), at 193 and 355 nm were investigated separately in a molecular beam using multimass ion imaging techniques. Two channels competed after excitation by one 193 nm photon. One channel is dissociation from the repulsive excited state along O-H bond distance, resulting in H atom elimination from meta-OH functional group. The other channel is internal conversion to the ground state, followed by H2O elimination. Some of the fragments further proceeded to secondary dissociation. On the other hand, absorption of one 355 nm photon gave rise to H2O elimination channel on the ground state. Absorption of more than one 355 nm photon resulted in the three-body dissociation which also occurs on the ground state. Dissociation on the excited state does not play a role at 355 nm. The large concentration ratio (2x10(5)), between neutral fragments and cations produced from 355 nm multiphoton excitation indicates that internal conversion followed by dissociation, is the major channel for 355 nm multiphoton excitation. Multiphoton ionization is a minor channel. Multiphoton ionization of 25DHBA clusters only produces 25DHBA cations. Neither anion nor protonated 25DHBA cation were observed. It is very different from the ions produced from solid matrix-assisted laser desorption/ionization (MALDI), experiments. This suggests that protonated 25DHBA and negatively charged 25DHBA generated in MALDI experiments does not simply result from the ionization following proton transfer reactions or charge transfer reactions of the clusters in the gas phase. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518709]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据