4.7 Article

Overcoming barriers in trajectory space: Mechanism and kinetics of rare events via Wang-Landau enhanced transition path sampling

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3496376

关键词

-

资金

  1. Austrian Science Fund (FWF) [P20942-N16]
  2. Austrian Science Fund (FWF) [P20942] Funding Source: Austrian Science Fund (FWF)
  3. Austrian Science Fund (FWF) [P 20942] Funding Source: researchfish

向作者/读者索取更多资源

Within the framework of transition path sampling (TPS), activation energies can be computed as path ensemble averages without a priori information about the reaction mechanism [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004)]. Activation energies computed for different conditions can then be used to determine by numerical integration the rate constant for a system of interest from the rate constant known for a reference system. However, in systems with complex potential energy surfaces, multiple reaction pathways may exist making ergodic sampling of trajectory space difficult. Here, we present a combination of TPS with the Wang-Landau (WL) flat-histogram algorithm for an efficient sampling of the transition path ensemble. This method, denoted by WL-TPS, has the advantage that from one single simulation, activation energies at different temperatures can be determined even for systems with multiple reaction mechanisms. The proposed methodology for rate constant calculations does not require the knowledge of the reaction coordinate and is generally applicable to Arrhenius and non-Arrhenius processes. We illustrate the applicability of this technique by studying a two-dimensional toy system consisting of a triatomic molecule immersed in a fluid of repulsive soft disks. We also provide an expression for the calculation of activation volumes from path averages such that the pressure dependence of the rate constant can be obtained by numerical integration. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496376]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据