4.7 Article

Dependence of the number of hydrogen bonds per water molecule on its distance to a hydrophobic surface and a thereupon-based model for hydrophobic attraction

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3499318

关键词

-

向作者/读者索取更多资源

A water molecule in the vicinity of a hydrophobic surface forms fewer hydrogen bonds than a bulk molecule because the surface restricts the space available for other water molecules necessary for its hydrogen-bonding. In this vicinity, the number of hydrogen bonds per water molecule depends on its distance to the surface. Considering the number of hydrogen bonds per bulk water molecule (available experimentally) as the only reference quantity, we propose an improved probabilistic approach to water hydrogen-bonding that allows one to obtain an analytic expression for this dependence. (The original version of this approach [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 130, 124713 (2009)] provides the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface as an average over all possible locations and orientations of the molecule.) This function (the number of hydrogen bonds per water molecule versus its distance to a hydrophobic surface) can be used to develop analytic models for the effect of hydrogen-bonding on the hydration of hydrophobic particles and their solvent-mediated interaction. Presenting a model for the latter, we also examine the temperature effect on the solvent-mediated interaction of two parallel hydrophobic plates. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499318]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据