4.7 Article

Quasichemical and structural analysis of polarizable anion hydration

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 132, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3280816

关键词

density functional theory; free energy; Gaussian distribution; heat of solution; liquid structure; liquid theory; polarisability; reaction kinetics theory; solvation; surface segregation; water

资金

  1. NSF [CHE-0709560]
  2. Army MURI program [DAAD19-02-1-0227]
  3. DOE [DE-FG02-97ER25308]
  4. Ohio Supercomputer Center

向作者/读者索取更多资源

Quasichemical theory is utilized to analyze the relative roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl-, Br-, and I-. Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The total hydration free energies display a stronger dependence on ion size than on polarizability. The quasichemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. The inner-shell contribution becomes slightly more favorable with increasing ion polarizability, indicating electrostriction of the nearby waters. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. This in turn allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. The van der Waals piece is small and positive, and it displays a small ion specificity. The sum of the inner-shell, packing, and long-ranged van der Waals contributions exhibits little variation along the anion series for the chosen conditioning radii, targeting electrostatic effects (influenced by ion size) as the largest determinant of specificity. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased anisotropy. The water dipole moments near the ion are similar in magnitude to bulk water, while the ion dipole moments are found to be significantly larger than those observed in quantum mechanical studies. Possible impacts of the observed over-polarization of the ions on simulated anion surface segregation are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据