4.7 Article

Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3462241

关键词

-

资金

  1. Japan Society for the Promotion of Science (JSPS), Ministry of Education, Culture, Sports, Science and Technology (MEXT) [21-5452]
  2. Core Research for the Evolution Science and Technology (CREST) of the Japan Science and Technology Corporation (JST)

向作者/读者索取更多资源

Molecular dynamics simulation has been applied for water to compare the isotropic periodic sum (IPS) method [X. Wu and B. R. Brooks, J. Chem. Phys. 122, 044107 (2005)] with the Ewald sum based on the diffusion coefficient and liquid structure. The IPS method gives a good estimation for the self-diffusion coefficient at a cutoff radius, r(c), greater than 2.2 nm; however, the radial distribution function g(r) has a notable deviation. The peak of this deviation appears at specific intermolecular distances which are near each cutoff radius and decrease in proportion to the inverse of the cube of r(c). Thus the deviation becomes insignificant (less than 1%) at r(c) greater than 2.2 nm. The distance dependent Kirkwood factor G(k)(r) was also calculated, and since the truncation of a long-range interaction of the cutofflike method (such as cutoff with or without the switch function and the reaction field) shows serious shortcomings for dipole-dipole correlations in bulk water systems, this was observed by comparing the shape to that of the Ewald sum [Y. Yonetani, J. Chem. Phys. 124, 204501 (2006); D. van der Spoel and P. J. van Maaren, J. Chem. Theory Comput. 2, 1 (2006)]. The G(k)(r) of cutofflike method greatly deviate from that of the Ewald sum. However, the discrepancy of G(k)(r) for the IPS method was found to be much less than that of other typical cutofflike methods. In conclusion, the IPS method is an adequately accurate technique for estimating transport coefficients and the liquid structure of water in a homogeneous system at long cutoff distances. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462241]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据