4.7 Article

The electrostatics of solvent and membrane interfaces and the role of electronic polarizability

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 132, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3402125

关键词

-

向作者/读者索取更多资源

The electrostatics of solvent and lipid bilayer interfaces are investigated with the aim of understanding the interaction of ions and charged peptides with biological membranes. We overcome the lacking dielectric response of hydrocarbon by carrying out atomistic molecular dynamics simulations using a polarizable model. For air-solvent or solvent-solvent interfaces, the effect of polarizability itself is small, yet changes in the fixed atomic charge distribution are responsible for substantial changes in the potential. However, when electrostatics is probed by finite solutes, a cancellation of dominant quadrupolar terms from the macroscopic and microscopic (solute-solvent) interfaces eliminates this dependence and leads to small net contributions to partitioning thermodynamics. In contrast, the membrane dipole potential exhibits considerable dependence on lipid electronic polarizability, due to its dominant dipolar contribution. We report the dipole potential for a polarizable lipid hydrocarbon membrane model of 480-610 mV, in better accord with experimental measurements. (C) 2010 American Institute of Physics. [doi:10.1063/1.3402125]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据