4.7 Article

Calibration study of the CCSD(T)-F12a/b methods for C2 and small hydrocarbons

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3491809

关键词

-

资金

  1. NSF [0420717]
  2. National Science Foundation [CHE-0723997]

向作者/读者索取更多资源

Explicitly correlated CCSD(T)-F12a/b methods combined with basis sets specifically designed for this technique have been tested for their ability to reproduce standard CCSD(T) benchmark data covering 16 small molecules composed of hydrogen and carbon. The standard method calibration set was obtained with very large one-particle basis sets, including some aug-cc-pV7Z and aug-cc-pV8Z results. Whenever possible, the molecular properties (atomization energies, structures, and harmonic frequencies) were extrapolated to the complete basis set limit in order to facilitate a direct comparison of the standard and explicitly correlated approaches without ambiguities arising from the use of different basis sets. With basis sets of triple-zeta quality or better, the F12a variant was found to overshoot the presumed basis set limit, while the F12b method converged rapidly and uniformly. Extrapolation of F12b energies to the basis set limit was found to be very effective at reproducing the best standard method atomization energies. Even extrapolations based on the small cc-pVDZ-F12/cc-pVTZ-F12 combination proved capable of a mean absolute deviation of 0.20 kcal/mol. The accuracy and simultaneous cost savings of the F12b approach are such that it should enable high quality property calculations to be performed on chemical systems that are too large for standard CCSD (T). (C) 2010 American Institute of Physics. [doi:10.1063/1.3491809]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据