4.7 Article

Quantum dynamics of dissociative chemisorption of CH4 on Ni(111): Influence of the bending vibration

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 133, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3491031

关键词

-

向作者/读者索取更多资源

Two-dimensional, three-dimensional, and four-dimensional quantum dynamic calculations are performed on the dissociative chemisorption of CH4 on Ni(111) using the multiconfiguration time-dependent Hartree (MCTDH) method. The potential energy surface used for these calculations is 15-dimensional (15D) and was obtained with density functional theory for points which are concentrated in the region that is dynamically relevant to reaction. Many reduced dimensionality calculations were already performed on this system, but the molecule was generally treated as pseudodiatomic. The main improvement of our model is that we try to describe CH4 as a polyatomic molecule by including a degree of freedom describing a bending vibration in our three-dimensional and four-dimensional models. Using a polyspherical coordinate system, a general expression for the 15D kinetic energy operator is derived, which discards all the singularities in the operator and includes rotational and Coriolis coupling. We use seven rigid constraints to fix the CH3 umbrella of the molecule to its gas phase equilibrium geometry and to derive two-dimensional, three-dimensional, and four-dimensional Hamiltonians, which were used in the MCTDH method. Only four degrees of freedom evolve strongly along the 15D minimum energy path: the distance of the center of mass of the molecule to the surface, the dissociative C-H bond distance, the polar orientation of the molecule, and the bending angle between the dissociative C-H bond and the umbrella. A selection of these coordinates is included in each of our models. The polar rotation is found to be important in determining the mode selective behavior of the reaction. Furthermore, our calculations are in good agreement with the finding of Xiang et al. [J. Chem. Phys. 117, 7698 (2002)] in their reduced dimensional calculation that the helicopter motion of the umbrella symmetry axis is less efficient than its cartwheel motion for promoting the reaction. The effect of pre-exciting the bend modes is qualitatively incorrect at higher energies, suggesting the necessity of including additional rotational and vibrational degrees of freedom in the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491031]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据