4.7 Article

The performance of minima hopping and evolutionary algorithms for cluster structure prediction

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3097197

关键词

atomic clusters; evolutionary computation; gold; ground states; Lennard-Jones potential; silicon

向作者/读者索取更多资源

We compare evolutionary algorithms with minima hopping for global optimization in the field of cluster structure prediction. We introduce a new average offspring recombination operator and compare it with previously used operators. Minima hopping is improved with a softening method and a stronger feedback mechanism. Test systems are atomic clusters with Lennard-Jones interaction as well as silicon and gold clusters described by force fields. The improved minima hopping is found to be well-suited to all these homoatomic problems. The evolutionary algorithm is more efficient for systems with compact and symmetric ground states, including LJ(150), but it fails for systems with very complex energy landscapes and asymmetric ground states, such as LJ(75) and silicon clusters with more than 30 atoms. Both successes and failures of the evolutionary algorithm suggest ways for its improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据