4.7 Article

Markovian milestoning with Voronoi tessellations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3129843

关键词

biochemistry; chemistry computing; computational geometry; lipid bilayers; Markov processes; molecular dynamics method; proteins; reaction kinetics theory; reaction rate constants

资金

  1. NSF [DMS02-09959, DMS02-39625, DMS07-08140]
  2. ONR [N00014-04-1-0565]

向作者/读者索取更多资源

A new milestoning procedure using Voronoi tessellations is proposed. In the new procedure, the edges of Voronoi cells are used as milestones, and the necessary kinetic information about the transitions between the milestones is calculated by running molecular dynamics (MD) simulations restricted to these cells. Like the traditional milestoning technique, the new procedure offers a reduced description of the original dynamics and permits to efficiently compute the various quantities necessary in this description. However, unlike traditional milestoning, the new procedure does not require to reinitialize trajectories from the milestones, and thereby it avoids the approximation made in traditional milestoning that the distribution for reinitialization is the equilibrium one. In this paper we concentrate on Markovian milestoning, which we show to be valid under suitable assumptions, and we explain how to estimate the rate matrix of transitions between the milestones from data collected from the MD trajectories in the Voronoi cells. The rate matrix can then be used to compute mean first passage times between milestones and reaction rates. The procedure is first illustrated on test-case examples in two dimensions and then applied to study the kinetics of protein insertion into a lipid bilayer by means of a coarse-grained model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据