4.7 Article

Simulations of nucleation and elongation of amyloid fibrils

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3050295

关键词

biochemistry; molecular biophysics; Monte Carlo methods; nucleation; proteins

资金

  1. National Science Foundation [DMR 0706454]
  2. NIH [5R01HG002776]
  3. AFOSR [FA9550-07-10347]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [0706454] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present a coarse-grained model for the growth kinetics of amyloid fibrils from solutions of peptides and address the fundamental mechanism of nucleation and elongation by using a lattice Monte Carlo procedure. We reproduce the three main characteristics of nucleation of amyloid fibrils: (1) existence of lag time, (2) occurrence of a critical concentration, and (3) seeding. We find the nucleation of amyloid fibrils to require a quasi-two-dimensional configuration, where a second layer of beta sheet must be formed adjunct to a first layer, which in turn leads to a highly cooperative nucleation barrier. The elongation stage is found to involve the Ostwald ripening (evaporation-condensation) mechanism, whereby bigger fibrils grow at the expense of smaller ones. This new mechanism reconciles the debate as to whether protofibrils are precursors or monomer reservoirs. We have systematically investigated the roles of time, peptide concentration, temperature, and seed size. In general, we find that there are two kinds of lag time arising from two different mechanisms. For higher temperatures or low enough concentrations close to the disassembly boundary, the fibrillization follows the nucleation mechanism. However, for low temperatures, where the nucleation time is sufficiently short, there still exists an apparent lag time due to slow Ostwald ripening mechanism. Consequently, the lag time is nonmonotonic with temperature, with the shortest lag time occurring at intermediate temperatures, which in turn depend on the peptide concentration. While the nucleation dominated regime can be controlled by seeding, the Ostwald ripening regime is insensitive to seeding. Simulation results from our coarse-grained model on the fibril size, lag time, elongation rate, and solubility are consistent with available experimental observations on many specific amyloid systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据