4.7 Article

Nature of Ar bonding to small Con+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3058637

关键词

argon; atomic clusters; binding energy; cobalt; density functional theory; infrared spectra; isomerism; metal clusters; molecular electronic states; multiphoton spectra; photodissociation; positive ions; vibrational states

资金

  1. Stichting voor Fundamenteel Onderzoek der Materie
  2. International Max Planck Research School: Complex Surfaces in Material Science

向作者/读者索取更多资源

Far-infrared vibrational spectroscopy by multiple photon dissociation has proven to be a very useful technique for the structural fingerprinting of small metal clusters. Contrary to previous studies on cationic V, Nb, and Ta clusters, measured vibrational spectra of small cationic cobalt clusters show a strong dependence on the number of adsorbed Ar probe atoms, which increases with decreasing cluster size. Focusing on the series Co-4(+) to Co-8(+) we therefore use density-functional theory to analyze the nature of the Ar-Co-n(+) bond and its role for the vibrational spectra. In a first step, energetically low-lying isomer structures are identified through first-principles basin-hopping sampling runs and their vibrational spectra are computed for a varying number of adsorbed Ar atoms. A comparison of these fingerprints with the experimental data enables in some cases a unique assignment of the cluster structure. Independent of the specific low-lying isomer, we obtain a pronounced increase in the Ar binding energy for the smallest cluster sizes, which correlates nicely with the observed increased influence of the Ar probe atoms on the IR spectra. Further analysis of the electronic structure motivates a simple electrostatic picture that not only explains this binding energy trend but also rationalizes the stronger influence of the rare-gas atom compared to the preceding studies by the small atomic radius of Co.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据