4.7 Article

Random hcp and fcc structures in thermoresponsive microgel crystals

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3210765

关键词

annealing; colloidal crystals; cooling; free radical reactions; lattice constants; liquid structure; materials preparation; melting; polymer gels; polymerisation; precipitation (physical chemistry); recrystallisation; suspensions

资金

  1. UGC-DAE-CSR, Kolkata

向作者/读者索取更多资源

Monodisperse thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles having a diameter of 520 nm were synthesized by free-radical precipitation polymerization and centrifuged to obtain a concentrated suspension. The centrifuged mother suspension was made to self-order into a crystalline state by repeated annealing beyond the volume phase transition (VPT) of the particles. We report here the three-dimensional (3D) real space structure, determined using a confocal laser scanning microscope, of PNIPAM microgel crystal samples prepared by two different recrystallized routes: (1) solidifying a shear melted colloidal liquid (referred as as-prepared sample) and (2) slow cooling of a colloidal liquid (referred as recrystallized sample). We have recorded images of several regions of the crystal with each region containing 15 horizontal crystal planes for determining the in-plane [two-dimensional (2D)] and 3D pair-correlation functions. The 2D pair-correlation function g(r) revealed hexagonal long-range order of particles in the layers with a lattice constant of 620 nm. The analysis of stacking sequence of layers recorded on as-prepared sample has revealed the existence of stacking disorder with an average stacking probability alpha similar to 0.42. This value of alpha together with the analysis of 3D pair-correlation function determined from particle positions revealed the structure of microgel crystals in the as-prepared sample to be random hexagonal close packing. We report the first observation of a split second peak in the 3D g(r) of the microgel crystals obtained from a shear melted liquid. Upon melting the sample above VPT and recrystallizing it the split second peak disappeared and the crystals are found to have a face centered cubic (fcc) structure with alpha similar to 0.95. From simulations, the split second peak is shown to arise from the displacement of some of the B-planes from the ideal hcp positions. The present results are discussed in light of those reported for charged and hard sphere colloidal crystals and plausible reasons for observing two different structures are also explained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据