4.7 Article

Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3055594

关键词

chemical potential; liquid mixtures; liquid theory; mixing; Monte Carlo methods

资金

  1. Department of Energy's Computational Science

向作者/读者索取更多资源

Previously, we described a coarse-graining method for creating local density-dependent implicit solvent (DDIS) potentials that reproduce the radial distribution function (RDF) and solute excess chemical potential across a range of particle concentrations [E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008)]. In this work, we test the transferability of these potentials, derived from simulations of monomeric solute in monomeric solvent, to mixtures of solutes and to solute chains in the same monomeric solvent. For this purpose, transferability refers to the predictive capability of the potentials without additional optimization. We find that RDF transferability to mixtures is very good, while RDF errors in systems of chains increase linearly with chain length. Excess chemical potential transferability is good for mixtures at low solute concentration, chains, and chains of mixed composition; at higher solute concentrations in mixtures, chemical potential transferability fails due to the nature of the DDIS potentials, in which particle insertion directly affects the interaction potential. With these results, we demonstrate that DDIS potentials derived for pure solutes can be used effectively in the study of many important systems including those involving mixtures, chains, and chains of mixed composition in monomeric solvent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据