4.7 Article

A diffusional bimolecular propensity function

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3253798

关键词

-

资金

  1. NIBIB NIH HHS [R01 EB007511, R01EB007511] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM078992, R01GM078992] Funding Source: Medline

向作者/读者索取更多资源

We derive an explicit formula for the propensity function (stochastic reaction rate) of a generic bimolecular chemical reaction in which the reactant molecules move about by diffusion, as solute molecules in a bath of much smaller and more numerous solvent molecules. Our derivation assumes that the solution is macroscopically well stirred and dilute in the solute molecules. It effectively extends the physical rationale for the chemical master equation and the stochastic simulation algorithm from well-stirred dilute gases to well-stirred dilute solutions, with the former becoming a limiting case of the latter. This extension is important for cellular systems, where the solvent molecules are typically water and the solute (reactant) molecules are much larger organic structures, whose relatively low populations often require a discrete-stochastic formalism. In the course of our derivation, we illuminate some limitations on the ability of the classical diffusion equation to accurately describe how a diffusing molecule moves on spatial and temporal scales that are relevant to collision-induced chemical reactions. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253798]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据