4.7 Article

Density functional theory study of the conformational space of an infinitely long polypeptide chain

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3207815

关键词

density functional theory; hydrogen bonds; molecular biophysics; molecular configurations; potential energy surfaces; proteins

资金

  1. CONACYT [MOD-ORD-12-08 PCI-085-04-08]

向作者/读者索取更多资源

The backbone conformational space of infinitely long polyalanine is investigated with density-functional theory and mapping the potential energy surface in terms of (L, theta) cylindrical coordinates. A comparison of the obtained (L, theta) Ramachandran-like plot with results from an extended set of protein structures shows excellent conformity, with the exception of the polyproline II region. It is demonstrated the usefulness of infinitely long polypeptide models for investigating the influence of hydrogen bonding and its cooperative effect on the backbone conformations. The results imply that hydrogen bonding together with long-range electrostatics is the main actuator for most of the structures assumed by protein residues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据