4.7 Article

Understanding protein folding cooperativity based on topological consideration

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3200952

关键词

entropy; molecular biophysics; molecular dynamics method; proteins

资金

  1. National Natural Science Foundation of China [10834002]
  2. National Basic Research Program of China [2006CB910302, 2007CB814800]

向作者/读者索取更多资源

The folding cooperativity is an important issue of protein folding dynamics. Since the native topology plays a significant role in determining the folding behavior of proteins, we believe that it also has close relationship with the folding cooperativity. In the present work, we perform simulations on proteins Naf-BBL, QNND-BBL, CI2, and SH3 with the Gomacr model and compare their different folding behaviors. By analyzing the weak cooperative folding of protein Naf-BBL in detail, we found that the folding of Naf-BBL shows relatively weak thermodynamic coupling between residues, and such weak coupling is found mainly between the nonlocal native contacts. This finding complements our understandings on the source of barrierless folding of Naf-BBL and promotes us to analyze the topological origins of the poor thermodynamic coupling of Naf-BBL. Then, we further extend our analysis to other two-state and multistate proteins. Based on the considerations of the thermodynamic coupling and kinetic coupling, we conclude that the fraction of scattered native contacts, the difference in loop entropy of contacts, and the long range relative contact order are the major topological factors that influence the folding cooperativity. The combination of these three tertiary structural features shows significant correlations with the folding types of proteins. Moreover, we also discuss the topological factors related to downhill folding. Finally, the generic role of tertiary structure in determining the folding cooperativity is summarized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据