4.7 Article

Multidimensional theory of protein folding

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3097018

关键词

biochemistry; free energy; molecular biophysics; molecular configurations; proteins

资金

  1. Grants-in-Aid for Scientific Research [20244068] Funding Source: KAKEN

向作者/读者索取更多资源

Theory of multidimensional representation of free energy surface of protein folding is developed by adopting structural order parameters of multiple regions in protein as multiple coordinates. Various scenarios of folding are classified in terms of cooperativity within individual regions and interactions among multiple regions and thus obtained classification is used to analyze the folding process of several example proteins. Ribosomal protein S6, src-SH3 domain, CheY, barnase, and BBL domain are analyzed with the two-dimensional representation by using a structure-based Hamiltonian model. The extension to the higher dimensional representation leads to the finer description of the folding process. Barnase, NtrC, and an ankyrin repeat protein are examined with the three-dimensional representation. The multidimensional representation allows us to directly address questions on folding pathways, intermediates, and transition states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据