4.7 Article

Monte Carlo determination of mixed electrolytes next to a planar dielectric interface with different surface charge distributions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3276279

关键词

electric breakdown; electrolytes; liquid theory; Monte Carlo methods; surface charging

资金

  1. National Basic Research Program of China [2007CB925101]
  2. National Natural Science Foundation of China [10974080, 20674037, 10629401]

向作者/读者索取更多资源

Employing canonical ensemble Monte Carlo simulations, we report a calculation of the distribution of small ions next to a planar negatively charged surface in the presence of mixed electrolytes of monovalent and trivalent salt ions within the framework of the primitive model under more realistic hydrated ion size conditions. The effects of surface charge discreteness and dielectric breakdown on charge inversion are discussed based on increasing concentration of both monovalent and trivalent salt. Moreover, a comparison of the simulation results for different discretization models is made along with the case of uniformly distributed charge in terms of the ionic density profiles as well as the integrated charge distribution function. For finite size charged groups located inside the lower dielectric region, a complete equivalence with the case of uniform distribution is observed if the quantities of interest are exclusively analyzed as a function of the distance to the charged interface. With protruding head groups into the aqueous solution, the excluded volume dominates over the correlation effect, therefore the ions are less accumulated in the vicinity of the charged surface, inducing that the onset position of charge inversion experiences an evident shift toward the aqueous environment. Overall, the effect of repulsive image forces on the diffuse double layer structure can be significant at low surface charge density irrespectively of surface charge distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据