4.7 Article

Free-time and fixed end-point optimal control theory in quantum mechanics: Application to entanglement generation

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3062860

关键词

optimal control; quantum computing; quantum entanglement; rotational states

资金

  1. CREST
  2. JST

向作者/读者索取更多资源

We have constructed free-time and fixed end-point optimal control theory for quantum systems and applied it to entanglement generation between rotational modes of two polar molecules coupled by dipole-dipole interaction. The motivation of the present work is to solve optimal control problems more flexibly by extending the popular fixed time and fixed end-point optimal control theory for quantum systems to free-time and fixed end-point optimal control theory. As a demonstration, the theory that we have constructed in this paper will be applied to entanglement generation in rotational modes of NaCl-NaBr polar molecular systems that are sensitive to the strength of entangling interactions. Our method will significantly be useful for the quantum control of nonlocal interaction such as entangling interaction, which depends crucially on the strength of the interaction or the distance between the two molecules, and other general quantum dynamics, chemical reactions, and so on.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据