4.7 Review

Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 131, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3225203

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN5806-05]

向作者/读者索取更多资源

The automerization of cyclobutadiene (CBD) is employed to test the performance of the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, as well as of its perturbatively corrected version accounting for the remaining (secondary) triples [RMR CCSD(T)]. The experimental results are compared with those obtained by the standard CCSD and CCSD(T) methods, by the state universal (SU) MR CCSD and its state selective or state specific (SS) version as formulated by Mukherjee et al. (SS MRCC or MkMRCC) and, wherever available, by the Brillouin-Wigner MRCC [MR BWCCSD(T)] method. Both restricted Hartree-Fock (RHF) and multiconfigurational self-consistent field (MCSCF) molecular orbitals are employed. For a smaller STO-3G basis set we also make a comparison with the exact full configuration interaction (FCI) results. Both fundamental vibrational energies-as obtained via the integral averaging method (IAM) that can handle anomalous potentials and automatically accounts for anharmonicity- and the CBD automerization barrier for the interconversion of the two rectangular structures are considered. It is shown that the RMR CCSD(T) potential has the smallest nonparallelism error relative to the FCI potential and the corresponding fundamental vibrational frequencies compare reasonably well with the experimental ones and are very close to those recently obtained by other authors. The effect of anharmonicity is assessed using the second-order perturbation theory (MP2). Finally, the invariance of the RMR CC methods with respect to orbital rotations is also examined. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3225203]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据