4.7 Article

Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3120605

关键词

-

资金

  1. National Institutes of Health [5R01GM061870-08]

向作者/读者索取更多资源

A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids on-the-fly QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3120605]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据