4.7 Article

Structure and short-time dynamics in suspensions of charged silica spheres in the entire fluid regime

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 130, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3078408

关键词

diffusion; freezing; hydrodynamics; liquid structure; phase diagrams; photon correlation spectroscopy; silicon compounds; suspensions; X-ray scattering

资金

  1. Deutsche Forschungsgemeinschaft [SFB-TR6]
  2. FONCYT [S080118]
  3. SeCyT-UNC [OICT 2005-33691]

向作者/读者索取更多资源

We present an experimental study of short-time diffusion properties in fluidlike suspensions of monodisperse charge-stabilized silica spheres suspended in dimethylformamide. The static structure factor S(q), the short-time diffusion function D(q), and the hydrodynamic function H(q) have been probed by combining x-ray photon correlation spectroscopy experiments with static small-angle x-ray scattering. Our experiments cover the full liquid-state part of the phase diagram, including de-ionized systems right at the liquid-solid phase boundary. We show that the dynamic data can be consistently described by the renormalized density fluctuation expansion theory of Beenakker and Mazur over a wide range of concentrations and ionic strengths. In accordance with this theory and Stokesian dynamics computer simulations, the measured short-time properties cross over monotonically, with increasing salt content, from the bounding values of salt-free suspensions to those of neutral hard spheres. Moreover, we discuss an upper bound for the hydrodynamic function peak height of fluid systems based on the Hansen-Verlet freezing criterion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据