4.7 Article

On the pressure-induced loss of crystallinity in orthophosphates of zinc and calcium

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2837809

关键词

-

向作者/读者索取更多资源

A recently suggested mechanism for the stress memory of various metal phosphates is investigated experimentally. Based on first-principles simulations [N. J. Mosey , Science 307, 1612 (2005)], it had been argued that atoms with flexible coordination, such as zinc or heavy-metal cations, act as network-forming agents, undergoing irreversible pressure-induced changes in bonding that lead to increased connectivity between phosphate anions. In the present study, orthophosphates of zinc and calcium were exposed to high pressures on surfaces and in diamond anvil cells. An additional set of first-principles simulations was accomplished on alpha-orthophosphate of zinc, which suggested that this material was already cross-linked before compression but that it nevertheless underwent a reversible coordination change under pressure in agreement with the experimental results presented here. Raman spectra indicate an irreversible, pressure-induced loss of long-range crystallinity. The pressures required to induce these changes are around 7 GPa for the zinc phosphates, while they are close to 21 GPa for the calcium phosphates. Hydrogenation of the metal phosphate lowers the threshold pressure by approximately 2-3 GPa in both cases. Moreover, alpha-orthophosphate of zinc could be partially amorphisized under nonisotropic pressure on copper foils. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据