4.7 Article

Laser-induced currents along molecular wire junctions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2940796

关键词

-

向作者/读者索取更多资源

The treatment of the previous paper is extended to molecular wires. Specifically, the effect of electron-vibrational interactions on the electronic transport induced by femtosecond omega+2 omega laser fields along unbiased molecular nanojunctions is investigated. For this, the photoinduced vibronic dynamics of trans-polyacetylene oligomers coupled to macroscopic metallic leads is followed in a mean-field mixed quantum-classical approximation. A reduced description of the dynamics is obtained by introducing projective lead-molecule couplings and deriving an effective Schrodinger equation satisfied by the orbitals in the molecular region. Two possible rectification mechanisms are identified and investigated. The first one relies on near-resonance photon-absorption and is shown to be fragile to the ultrafast electronic decoherence processes introduced by the wire's vibrations. The second one employs the dynamic Stark effect and is demonstrated to be highly efficient and robust to electron-vibrational interactions. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据