4.7 Article

Force balance of particles trapped at fluid interfaces

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2890035

关键词

-

向作者/读者索取更多资源

We study the effective forces acting between colloidal particles trapped at a fluid interface which itself is exposed to a pressure field. To this end, we apply what we call the force approach, which relies solely on the condition of mechanical equilibrium and turns to be in a certain sense less restrictive than the more frequently used energy approach, which is based on the minimization of a free energy functional. The goals are (i) to elucidate the advantages and disadvantages of the force approach as compared to the energy approach, and (ii) to disentangle which features of the interfacial deformation and of the capillary-induced forces between the particles follow from the gross feature of mechanical equilibrium alone, as opposed to features which depend on the details of, e.g., the interaction of the interface with the particles or the boundaries of the system. First, we derive a general stress-tensor formulation of the forces at the interface. On that basis we work out a useful analogy with two-dimensional electrostatics in the particular case of small deformations of the interface relative to its flat configuration. We apply this analogy in order to compute the asymptotic decay of the effective force between particles trapped at a fluid interface, extending the validity of the previous results and revealing the advantages and limitations of the force approach compared to the energy approach. It follows the application of the force approach to the case of deformations of a nonflat interface. In this context, we first compute the deformation of a spherical droplet due to the electric field of a charged particle trapped at its surface and conclude that the interparticle capillary force is unlikely to explain certain recent experimental observations within such a configuration. We finally discuss the application of our approach to a generally curved interface and show as an illustrative example that a nonspherical particle deposited on an interface forming a minimal surface is pulled to regions of larger curvature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据