4.7 Article

Theoretical characterization of temperature and density dependence of liquid water electronic excitation energy: Comparison with recent experimental data

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2826325

关键词

-

向作者/读者索取更多资源

In a recent paper [Aschi , ChemPhysChem 6, 53 (2005)], we characterized, by means of theoretical-computational procedures, the electronic excitation of water along the typical liquid state isochore (55.32 mol/l) for a large range of temperature. In that paper we were able to accurately reproduce the experimental absorption maximum at room temperature and to provide a detailed description of the temperature dependence of the excitation spectrum along the isochore. In a recent experimental work by Marin [J. Chem. Phys. 125, 104314 (2006)], water electronic excitation energy was carefully analyzed in a broad range of density and temperature, finding a remarkable agreement of the temperature behavior of the experimental data with our theoretical results. Here, by means of the same theoretical-computational procedures (molecular dynamics simulations and the perturbed matrix method), we investigate water electronic absorption exactly in the same density-temperature range used in the experimental work, hence, now considering also the absorption density dependence. Our results point out that, (1) for all the densities and temperatures investigated, our calculated absorption spectra are in very good agreement with the experimental ones and (2) the gradual maxima redshift observed increasing the temperature or decreasing the density has to be ascribed to a real shift of the lowest X -> A electronic transition, supporting the conclusions of Marin et al. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据