4.7 Article

Theoretical investigation of electronic excitation energy transfer in bichromophoric assemblies

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2829531

关键词

-

向作者/读者索取更多资源

Electronic excitation energy transfer (EET) rates in rylene diimide dyads are calculated using second-order approximate coupled-cluster theory and time-dependent density functional theory. We investigate the dependence of the EET rates on the interchromophoric distance and the relative orientation and show that Forster theory works quantitatively only for donor-acceptor separations larger than roughly 5 nm. For smaller distances the EET rates are over- or underestimated by Forster theory depending on the respective orientation of the transition dipole moments of the chromophores. In addition to the direct transfer rates we consider bridge-mediated transfer originating from oligophenylene units placed between the chromophores. We find that the polarizability of the bridge significantly enhances the effective interaction. We compare our calculations to single molecule experiments on two types of dyads and find reasonable agreement between theory and experiment. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据